

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Solid-Phase Spectrophotometric Determination of Beryllium at ng mL⁻¹

A. Molina-Díaz^a; M. J. Ayora-Cañada^a; M. I. Pascual-Reguera^a

^a Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences. University of Jaén, Jaén, Spain

To cite this Article Molina-Díaz, A. , Ayora-Cañada, M. J. and Pascual-Reguera, M. I.(1998) 'Solid-Phase Spectrophotometric Determination of Beryllium at ng mL⁻¹', Spectroscopy Letters, 31: 3, 503 — 520

To link to this Article: DOI: 10.1080/00387019808002745

URL: <http://dx.doi.org/10.1080/00387019808002745>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**SOLID-PHASE SPECTROPHOTOMETRIC DETERMINATION
OF BERYLLIUM AT ng mL^{-1}**

Key Words: Solid-phase spectrophotometry, chromazurol S, beryllium, underground water, mining waste water, beryl.

A. Molina-Díaz ^{*}, M.J. Ayora-Cañada and M.I. Pascual-Reguera

*Department of Physical and Analytical Chemistry. Faculty of Experimental Sciences.
University of Jaén. E-23071 Jaén (Spain).*

Abstract.

A microdetermination method at ng mL^{-1} level for beryllium by solid-phase spectrophotometry was been developed. Chrome Azurol S was used as chromogenic reagent to form a blue complex which was easily and strongly sorbed and concentrated on a dextran-type anion-exchange resin. The resin-phase absorbances at 594- and 800 nm were measured directly. Beryllium could be determined over the 1.5 - 15.0 ng mL^{-1} range with a RSD of 2.7 % by using 100 mL of sample solution. The detection limit was 0.21 ng mL^{-1} . By using only 10 mL of sample solution, the calibration graph was linear over the concentration range 10-85 ng mL^{-1} , the RSD

^{*} To whom correspondence should be addressed

being 1.2 %. The method was applied to the determination of beryllium in underground and mining waste water samples and in beryl mineral.

INTRODUCTION

Compounds of beryllium have a high toxicity and the tissues of mammalian species do not excrete it and, therefore, the effects are cumulative. It has been demonstrated that in humans beryllium damages the mucous membrane and the skin and its accumulation in the lungs originates berylliosis. Its presence in water is mainly due to the waste dumped by metallurgical and nuclear industries. The high toxicity mainly affects people who work in the areas of these industries¹. For the determination of trace amounts of beryllium in water samples, enrichment of this element prior to the determination step is required in order to obtain reliable results. Some papers have described many enrichment techniques based on various principles such as liquid-liquid extraction², coprecipitation³ and ion-exchange⁴.

Numerous complexes of Be(II) with azo reagents, and triphenylmetane reagents (such as Beryllon II, Eriochrome Black T, p-nitrophenylazo-resorcinol and Chromal Blue G) have been used for spectrophotometric determination of beryllium^{5,6}. They exhibit moderate sensitivity but it can be increased by addition of a cationic surfactant.

Chrome Azurol S (CAS) has been used as chromogenic reagent for spectrophotometric determinations of beryllium. In presence of EDTA as masking agent, the Chrome Azurol S method is highly selective for beryllium⁷.

The aim of this work was to develop an analytical method for beryllium with CAS simultaneously based in a selective enrichment and determination by solid phase spectrophotometry (SPS). This technique enables determining analyte concentrations at ng mL⁻¹ and, sometimes, at sub-*ng* mL⁻¹ levels⁸⁻¹¹ without requiring an expensive instrumentation combining the measurements of solid-surface absorbance with using a solid support to preconcentrate selectively the analyte and measuring the absorbance directly in the solid phase with the aid of a chromogenic reagent. The proposed method joins to the intrinsic selectivity offered by SPS that apported by using EDTA as masking agent.

EXPERIMENTAL

Reagents.

All reagents were of analytical-reagent grade and the water was doubly distilled.

Ion exchanger. Sephadex QAE A-25 (Aldrich), anion-exchange resin was used in the chloride form in original dry state as obtained from the supplier and without pretreatment.

Beryllium (II) standard solution 1000 mg L⁻¹, prepared by dissolving 19.660 g of beryllium sulfate tetrahydrate $\text{BeSO}_4 \cdot 4\text{H}_2\text{O}$ (Merck) in doubly distilled water containing 5 mL of conc. H_2SO_4 and diluting the solution with doubly distilled water to 1000 mL. Beryllium (II) working solutions were made "in situ" by dilution with doubly distilled water.

Buffer solution of pH 5.3, was made by dissolving 35.05 g of hexamethylenetetramine (HMTA) (Merck) and 25 mL of 4 M HCl in 500 mL of doubly distilled water and adjusting the pH with a few drops of HCl 4 M or NaOH 4 M. This solution was stored under refrigeration.

Chromazurol S (Aldrich) (CAS) buffered solution 1.7×10^{-4} M prepared by dissolving the necessary amount of the dye in the above HMTA buffer solution. This solution was stored under refrigeration. In this conditions the solution is stable for at least one month.

Ethylenediaminetetraacetic acid (Panreac) (EDTA) solution 1.72×10^{-2} M.

Apparatus.

A GBC 911 microcomputer-controlled UV-VIS spectrophotometer with glass cells (1-mm optical path length) was employed for all spectral measurements. The spectrophotometer was connected to a 80286 microcomputer by means of a serial port for data acquisition and data processing and fitted with GBC Scan Master Software V1.62 (from GBC). The spectra were registered with a scan rate of 250 nm/min. The pH measurements were made with a Crison Model 2002 pH-meter fitted with a glass-saturated calomel electrode assembly and a temperature probe. An

Agitaser 2000 rotating agitator and a desk centrifuge Selecta model S-240 were also used.

Absorbance measurements.

The absorbance (really attenuation) of the complex species sorbed on the resin was measured in a 1 mm glass cell at 594- (corresponding to the absorption maximum of the coloured species) and 800 nm (in a region where only the resin absorbs light). The net absorbance (A) for the complex was calculated from¹¹:

$$A_c = A_{594} - A_{800} \quad (1)$$

where: $A_{594} = A_{s594} - A_{b594}$ and $A_{800} = A_{s800} - A_{b800}$ and A_{sXXX} and A_{bXXX} are the absorbances of the sample and the blank (cell packed with resin equilibrated with blank solution) respectively at the indicated wavelength. In fact, the observed absorbance, A, at a given wavelength is obtained by¹²:

$$A = A_c + A_{soln} + A_R + A_{RL}$$

where A_c represents the absorbance of the complex species sorbed on the resin, A_{soln} that of the interstitial solution between the resin beads (it can be neglected), A_R that of the resin background ($A_{R800} \approx 1.000$) and A_{RL} that of the reagent in the solid phase. The packing of the resin in the cell beads affects the values of A_c , A_R and A_{RL} , but when the absorbance is measured at two different wavelengths, one corresponding to the absorption maximum of the coloured species (594 nm) and the other in a region where only the resin absorbs (800 nm), the absorbance difference, $A_{s594} - A_{s800}$, can be assumed to be constant under the similar packing conditions. On the other hand, if the absorbance of a blank resin is measured at the same two wavelengths, the absorbance difference, $A_{b594} - A_{b800}$, allows to estimate the absorbance of the complex, A_c (that is related with the concentration of analyte in the solution as it was shown by Yoshimura¹²) from the equation (1).

Procedures.

- I) To 100 mL of sample solution containing 1.5-15.0 ng mL⁻¹ of beryllium placed into a 1-l polyethylene bottle, 5 mL of 1.57 x 10⁻² M EDTA solution were

added and then the solution was hot for 15 min at 80° C in a water bath. After cooling, 10 mL of 1.7×10^{-4} M CAS buffered solution and 30 mg of Sephadex QAE A-25 resin were added. The mixture was shaken mechanically for 15 min after which the resin beads were collected by filtration under suction through a sintered glass plate and with the aid of a pipette packed into a 1-mm cell together with a small volume of the aqueous solution. Then, the cell was centrifuged for 1 min at 5000 rpm. A blank solution containing all reagents except beryllium was prepared and treated in the same way as described for the sample. Absorbances (A_{s594} , A_{s800} , A_{b594} and A_{b800}) were measured before 30 min from collection of resin as described under "Absorbance Measurements". The calibration graph was constructed in the same way by using beryllium solutions of known concentration.

II) To 10 mL of sample solution containing 10-85 ng mL⁻¹ of beryllium placed into a 20-mL glass test tube with stopper 1 mL of 1.57×10^{-2} M EDTA solution were added and then the solution was hot for 15 min. at 80° C in a water bath. After cooling, 2 mL of 5.78×10^{-4} M CAS buffered solution and 30 mg of Sephadex QAE A-25 resin were added. The mixture was shaken mechanically for 5 min after which the resin beads were collected by suction with the aid of a pipette, packed into a 1-mm cell and centrifuged as above. Absorbances measurements was carried out as described in procedure I).

Treatment of Samples.

a) Waters.

From the guidelines indicated in bibliography¹³, water samples were filtered through a membrane filter (Millipore) with a pore size of 0.45 µm and collected in a polyethylene container which had previously been carefully cleaned with a (1:1) nitric acid solution and rinsed with bidestilled water. Samples were stored at 4°C and the analyses were performed with the least possible delay (during the 24 h following their collection). The usual general precautions were taken to avoid contamination.

b) Beryl.

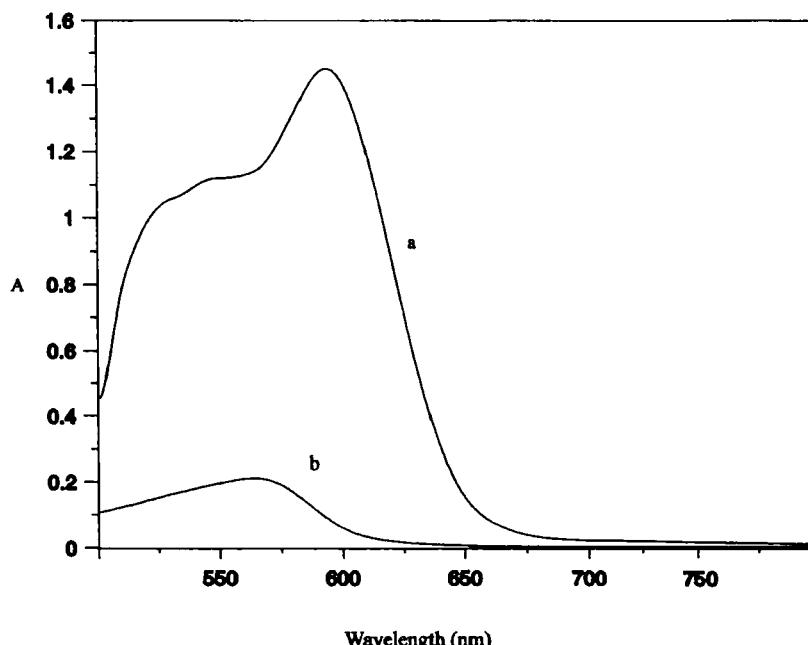
A suitable weight of sample (500 mg) was treated in a teflon crucible with 15 mL of a concentrate acid HF/H₂SO₄/HNO₃ solution mixture (prepared according to

Shapiro and Brannock¹⁴). The crucible was covered with a teflon cover, placed in a steam bath and heated overnight. Then, the cover was removed and crucible heated until acid fumes were no longer emitted. The content was transferred to a Vycor beaker using a minimum of water and heated until SO₃ evolve. Finally, the solution was cool to room temperature and diluted to 250 mL in a volumetric flask.

RESULTS AND DISCUSSION

Absorption Spectra in resin phase.

CAS reacts with Be(II) to originate a coloured complex in solution (570 nm, $\epsilon = 2.4 \times 10^4 \text{ L mol}^{-1} \text{ cm}^{-1}$). The optimum pH for the complex formation is about 4.5 - 5.0^{15, 16}. Between pH = 3.0 - 7.5 this complex is sorbed on an anion-exchange resin showing the absorption maximum at 594 nm. Figure 1 shows the spectra of the coloured species in solution and resin phase from which the strong increase of the sensitivity in solid phase as compared with solution becomes self-evident.


Study of experimental variables.

pH dependence.

At pH values below 4.0 and above 5.8, the absorbance value at 594 nm in resin phase decreases significatively. We chose pH 5.3 as the best pH value for following experiences due to the strong increase in absorbance shown by the fixed CAS on the resin below pH 5 (Fig. 2). The pH could be satisfactorily adjusted by addition of a 0.5 M HMTA/HCl buffer solution. By using this buffer solution, a significative increase in absorbance was observed with respect to use other buffers solutions (i.e. a 20% if acetic acid / acetate buffer was used).

Reagent concentration.

Absorbance increases with an increasing CAS concentration, a plateau occurring from a molar ratio [CAS]/[Be(II)] = 12 and 10 (for 100- and 10 mL sample

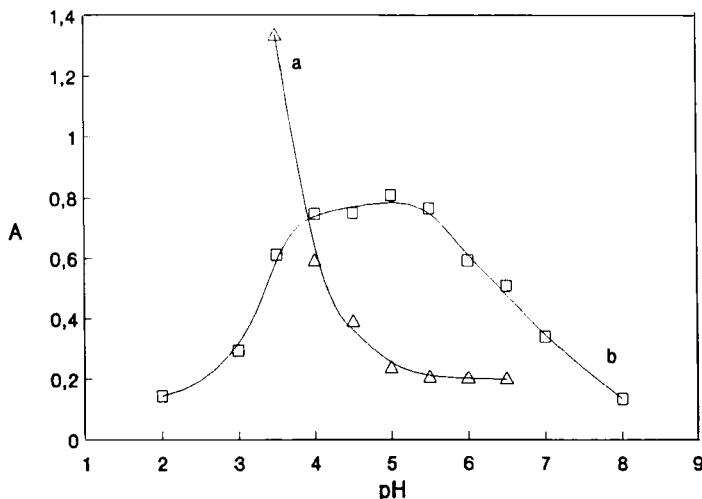


FIG. 1. Net absorption spectra of Be(II)-CAS species: (a) on the resin (blank resin as reference). $[CAS] = 2.2 \times 10^{-5} M$, $[Be(II)] = 2.6 \times 10^{-6} M$, 0.030 g of resin, 1 mm optical path length, sample volume 100 ml, stirring time 15 min, pH=5.0 (b) in aqueous solution, $[CAS] = 8.9 \times 10^{-5} M$, $[Be(II)] = 8.9 \times 10^{-6} M$, 10 mm optical path length, pH=5.0 (blank as reference).

volume respectively). It seems that the excess of free ligand competes with the complex for sorption on the resin phase and it originates these plateaus. $1.7 \times 10^{-5} M$, and $1.15 \times 10^{-4} M$ reagent concentrations were chosen for 100- and 10 mL sample volumes, respectively (molar $[CAS]/[Be(II)]$ ratio 15 and 13).

Other experimental conditions.

The use of a large amount of resin (m , g) reduces, as usually¹¹ the absorbance values (Fig. 3b). Absorbance decreases according to the empirical

FIG. 2. pH influence: a) on CAS absorbance; b) on Be(II)-CAS net absorption
 0.030 g of resin, $[Be(II)] = 1.6 \times 10^{-6}$ M, $[CAS] = 1.7 \times 10^{-5}$ M, 1 mm optical path length, stirring time 20 min, sample volume 100 mL.

equation: $\log A = -1.611 - 1.008 \lg m_r$ ($r = 0.9987$), that is: $A m_r^{-1.008} = 0.0245$. The empirical exponent 1.008 indicates that the hyperbole obtained is equilateral and, hence, the absorbance decreases inversely to amount of resin used (Fig. 3a). This result is similar to those obtained in other cases⁸⁻¹¹. 30 mg of dry resin were used as a compromise between the highest absorbance and ease of handling.

The best stirring times were 15 min and 5 min for 100- and 10 mL sample volumes, respectively (Fig. 4). The fixed complex is stable for 30 min after equilibration.

The order of addition of the reagents affects significantly the results obtained; the best order was: EDTA solution the first (for masking interferent ions such as Al(III) and Fe(III)). Second, the buffered CAS solution, then the sample and the last, the resin.

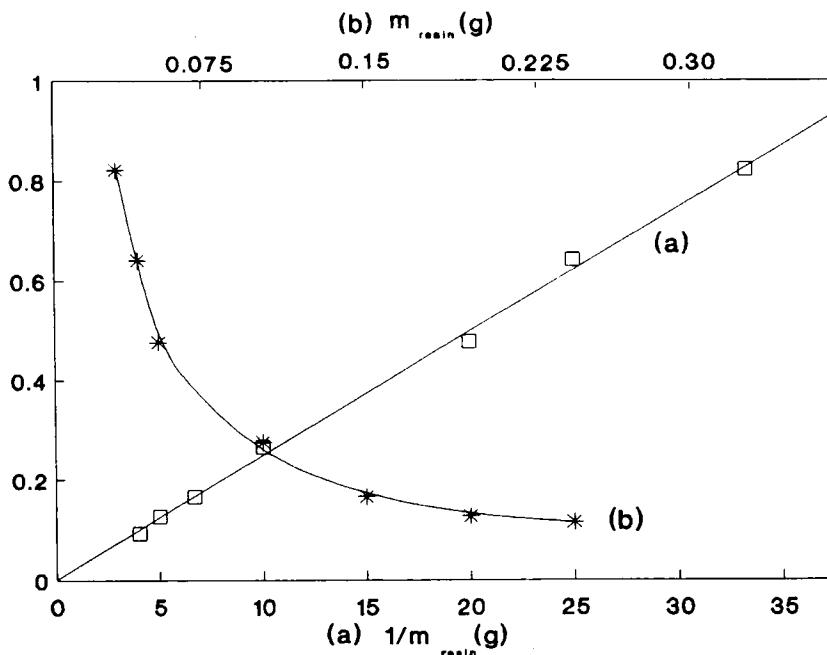
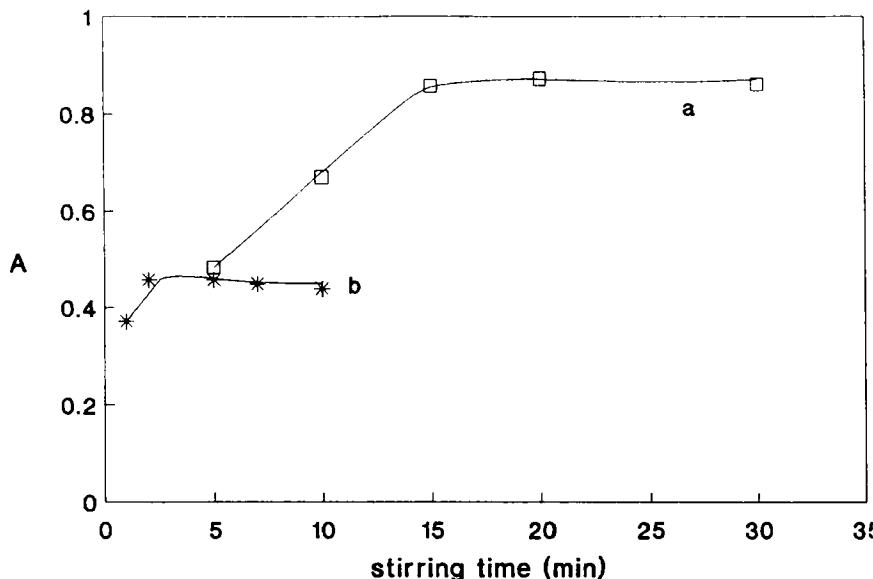



FIG. 3. Resin amount dependence. $[\text{CAS}] = 1.7 \times 10^{-5} \text{ M}$, $[\text{Be(II)}] = 1.3 \times 10^{-6} \text{ M}$, $\text{pH} = 5.3$, 1 mm optical path length, sample volume 100 ml, stirring time 30 min.

Distribution measurements.

CAS buffered solution and 30 mg of Sephadex QAE A-25 resin were added to a 100 mL water solution containing 200 nmole of Be(II). After 15 min equilibration, the resin was separated by filtration. Then, the equilibrium concentration of Be(II) in solution was determined as described in the 100 mL volume procedure (procedure I). The distribution ratio, D , (mmole of Be(II) sorbed per g of resin/mmole of Be(II) per mL of solution) was calculated from the initial and equilibrium concentrations in the solution. An average value of $(4.7 \pm 0.7) \times 10^3 \text{ mL g}^{-1}$ was obtained from four replicate determinations. In the same conditions, the distribution ratio for CAS was $(19.1 \pm 0.8) \times 10^4 \text{ mL g}^{-1}$.

FIG. 4. Stirring time dependence on color development in resin-fase.

0.030 g of resin, pH = 5.3

(a) 100 ml of sample, $[CAS] = 1.7 \times 10^{-5}$ M, $[Be(II)] = 1.6 \times 10^{-6}$ M

(b) 10 ml of sample, $[CAS] = 1.2 \times 10^{-4}$ M, $[Be(II)] = 4.4 \times 10^{-6}$ M

Nature of the fixed complex.

The probable composition of the fixed Be(II)-CAS complex on Sephadex was established at the working pH 5.3 using the Job¹⁷ and the equilibrium shift¹⁸ methods. Job method showed a ratio $[CAS]/[Be(II)] = 1$. The graph of $\log (A/(A_{max}-A))$ vs $\log [CAS]$ (equilibrium shift method) gave a slope of 0.96 ($r=0.9979$). Consequently, results indicated that a 1:1 (CAS:Be(II)) anionic complex is fixed on the anionic exchanger. These results agree with those found in aqueous solution¹⁹.

Figures of merit

In the above mentioned conditions, the main figures of merit of the two SPS procedures proposed (for 2 different sample volumes of Beryllium) have been

established. Table I summarizes the values found for the linear dynamic range, calibration line (equation and correlation coefficient), sensitivity, limit of detection and determination and reproducibility.

The reproducibility was calculated in terms of the variation coefficient (per cent relative standard deviation) from the absorbance of 10 independent measurements of a same sample at the concentration levels of 10 ng mL^{-1} and 70 ng mL^{-1} , for 100- and 10-mL sample, respectively. It was possible verifying that the reproducibility is improved when the cells packed with the resin were centrifuged, during 1 min at 5000 rpm, previously the spectrophotometric measurements and the absorbance values were increased about 15%. Centrifugation time beyond 1 min does not increase absorbance values.

The limit of detection ($K = 3$)²⁰ and the quantification limit ($K = 10$)²¹ were established from the standard deviation of the absorbance measurements of ten independent blanks (average values were 0.0020 and 0.0014) for each procedure and the standard deviation values were 6.86×10^{-2} and 5.1×10^{-3} absorbance units for 100- and 10- mL sample volumes, respectively.

The sensitivity was obtained for the slope of the calibration line and expressed as apparent molar absorptivity. As can be seen, and it is intrinsic to Solid Phase Spectrophotometric methodology, sensitivity is enhanced by increasing the sample volume used in the determination. Thus, for 100 mL sample volume, sensitivity is about 6-fold higher than for 10 mL of sample.

In Table 2 the sensitivity, expressed as apparent molar absorptivity, of the proposed procedures is compared with that of spectrophotometric procedures (including extractive procedures and formation of ternary complexes with surfactants) described in the literature for beryllium. It is observed that SPS methodology using CAS gives a very noticeable increase in sensitivity in relation to procedures in

TABLE 1
Analytical Figures of Merit

Parameter	Volume of sample system (mL)	
	100	10
calibration line	intercept slope (mL ng ⁻¹)	0.002 (8.75x10 ⁻⁴) [*] 6.61x10 ⁻² (1.25x10 ⁻³) [*]
	corr coeff	0.9992
	LDR ^a (ng mL ⁻¹)	1.5 - 15.0
sensitivity ^b (L mol ⁻¹ cm ⁻¹)		5.96x10 ⁶
DL ^b (ng mL ⁻¹)		0.21
QL ^c (ng mL ⁻¹)		0.71
RSD (%) (n=10)		2.7
		1.03x10 ⁶
		1.4
		4.4
		1.2

^{*} Standard deviation of three independent calibrations

^b Expressed as apparent molar absorptivity (Absorbance value of the species sorbed on the resin from a 1M aqueous solution of Be(II) and supposing that it was measured in a 10-mm optical path length)

^aLDR, linear dynamic range. ^bDL, Detection limit. ^cQL, quantification limit

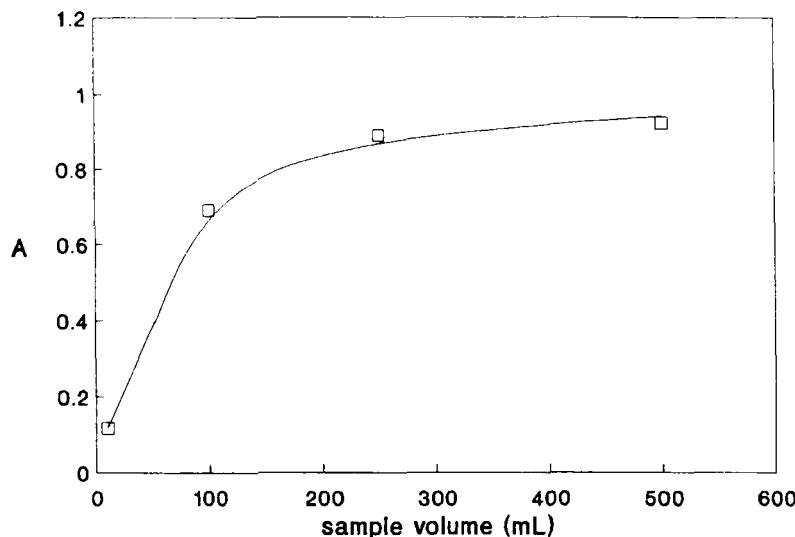
homogeneous solution and extractive methods using conventional spectrophotometry. On the other hand, matrix effects, can be reduced by diluting the samples, taking into account the sensitivity of the method proposed and the dependence of the sensitivity on the sample volume (Fig. 5).

Effect of foreign ions

In Table 3 the effect of various potential interferent species, commonly found in the water, on the determination of 60 ng mL⁻¹ of Be(II) is listed. This effect was investigated by adding a known amount of the test ion to the beryllium solution. A

TABLE 2

Comparison of Sensitivity of some Beryllium Conventional Spectrophotometric Methods


Reagent	Molar absorptivity (λ_{max})	Reference
Beryllon II	1.20×10^4 (630)	22
Thoron I	1.36×10^4 (523)	23
Sulphochrome	1.40×10^4	7
Eriochrome Cyanine R	1.50×10^4 (525)	24
Chrome Azurol S	2.40×10^4 (569)	16
Chromal Blue G	3.10×10^4	7
Eriochrome Black T ^a	5.50×10^4	7
Eriochrome Cyanine R / CTA ^b	8.65×10^4 (590)	25
Chrome Azurol S / PDA ^b	9.01×10^4 (605)	26
Chromal Blue G / CTA	9.40×10^4 (626)	27
Chrome Azurol S / CTA ^b	9.45×10^4 (615)	28
Chrome Azurol S (10 mL) ^c	1.03×10^6 [•] (594)	This paper
Chromazurol S (100 mL) ^c	5.96×10^6 [•] (594)	This paper

^a extractive procedure

^b ternary complexes, CTA: Cetyltrimetilamonium chloride

^c Solid-Phase Spectrophotometry

[•] Apparent molar absorptivity: Absorbance value of the complex sorbed on the resin from a 1 M aqueous solution of Be(II) and measured in a 10 mm optical path length cell.

FIG. 5. Effect of volume on sensitivity.

$[\text{CAS}] = 1.7 \times 10^{-5} \text{ M}$, $[\text{Be(II)}] = 1.2 \times 10^{-6} \text{ M}$, $\text{pH} = 5.3$, amount of resin = 0.030 g, stirring time = 15 - 120 min.

TABLE 3

Effect of Foreign Ions on the Determination of 60 ng mL^{-1} of Beryllium

Foreign ion or species	Tolerance level (ng mL^{-1})
Ca(II), Cu(II), Mg(II), Fe(II)*, Fe(III)* Al(III)*, Na(I), Cl ⁻ , NO ₃ ⁻ , SO ₄ ²⁻	2000
CO ₃ ²⁻	1000
Zn(II), Pb(II)	500
HPO ₄ ²⁻ , UO ₂ (II), F ⁻	100

* In the presence of EDTA

2000 ng mL⁻¹ maximum level of potentially interfering ions were tested firstly and if the interference occurred, the concentration of interferent was reduced progressively until interference ceased. Higher concentrations than 2000 ng mL⁻¹ were not tested. Tolerance level is defined as the foreign ion concentration that produces not more than $\pm 5\%$ spectrophotometric error in the recovery of Be(II).

Analytical applications.

The proposed method has been applied to the determination of beryllium content in underground and mining waste waters and a beryl mineral. In water samples, a study of recovery was also undertaken.

Water samples.

The method was applied to the determination of beryllium in water samples by standard addition calibration graph method by using 100 mL sample volume (Table 4).

- a) **Underground water** from Ciudad Rodrigo city (Salamanca province).
- b) **Uranium mining waste water** from Ciudad Rodrigo city (Salamanca province).

The loss of sensitivity caused by the matrix effect could be evaluated from the ratio of slopes of the standard addition calibration graph and the standard calibration graph: the ratios were 1.220 (from underground water) and 0.501 (from uranium mining waste water). It is seen that the matrix effect in these waters is noticeable. We attribute this strong matrix effect to the high ionic content, principally Ca(II) and SO₄²⁻ in the second water. Results, including recovery study were satisfactory.

Mineral.

The method was applied to the determination of beryllium in a mineral sample (beryl) by standard addition calibration graph method using 10 mL sample volume. A minor matrix effect was observed in this case: 0.908 was the ratio of slopes. Results were also satisfactory (Table 4).

TABLE 4 Analytical Applications

Sample	Amount added (ng mL ⁻¹)	Amount found (ng mL ⁻¹)	Recovery (%)	Amount found by ETAAS (ng mL ⁻¹)
Underground				
water ^a	0.00	4.6 ± 0.2	--	4.7 ± 0.2
	2.00	6.5	97.0	
	5.00	9.6	100.4	
Mining waste				
water ^a	0.00	10.8 ± 0.5	--	11.0 ± 0.4
	5.00	15.6	96.8	
	10.00	20.6	98.0	
Beryl^b	--	4.30 ± 0.09*		4.4 ± 0.1*

^aStandard addition calibration graph method. 100 mL sample volume

^bStandard addition calibration graph method. 10 mL sample volume

*Amount expressed as % BeO

Values are average of three determinations

CONCLUSIONS

Beryllium can be analyzed with accuracy and precision at ng·mL⁻¹ by SPS with CAS as chromogenic reagent and Sephadex QAE A-25 anion exchange resin as solid support.

Although the proposed method seems to be tedious, it is a very sensitive one-step method which allows to determinate Be(II) from 1.5 to 80 ng·mL⁻¹ without requiring an expensive and sophisticate instrumentation such as HPLC, ICP, ETAAS. However, a larger sample volume is required.

The method here developed shows a sensitivity up to 25 times higher than the same procedure in solution but using only 0.1 cm of optical path length instead of 1

cm (conventional spectrophotometry). Moreover, precision is similar to that of the usual spectrophotometry in spite of measurements are obtained on a solid support.

ACKNOWLEDGEMENTS

The authors express their thanks to Dirección General de Universidades e Investigación de la Junta de Andalucía (Spain) (Annual Grant Nº FQM0173) for financial support.

REFERENCES

1. Haguenoer J.M., Furon, D. *Toxicology et Higiene Industrielles*. Technique et Documentation, Vol 1, Paris 1981
2. Measures C.I., Edmond J.M. *Anal. Chem.* 1986; 58:2065
3. Ueda J., Kitadani T. *Analyst* 1988; 113:581
4. Deas J., Pobi M. *Anal.Chim.Acta*, 1991; 242:107
5. White J.C., Meyer A.S., Manning D.L. *Anal. Chem.* 1956; 28:956
6. Crawley R.H. *Anal. Chim. Acta* 1960; 22:413
7. Marczenko Z. *Separation and Spectrophotometric Determination of Elements*, Chichester: Ellis Hrwood, 1986
8. Molina-Díaz A., Herrador Mariscal J.M., Pascual Reguera M.I., Capitán Vallvey, L.F. *Talanta* 1993; 40:1059
9. Fernández de Córdoba M.L., Ruiz-Medina A., Molina-Díaz A. *Fresenius J. Anal. Chem.* 1997; 357:44
10. Pascual-Reguera M.I., Molina-Díaz A., Ramos-Martos N., Capitán-Vallvey L.F. *Anal. Lett.* 1991; 24:2245
11. Fernández-de Córdoba M.L., Molina-Díaz A., Pascual-Reguera M.I., Capitán-Vallvey L.F. *Talanta* 1995; 42:1057
12. Yoshimura K., Waki H. *Talanta* 1985; 32:345
13. American Public Health Association, American Water Works Association and Water Pollution Control Federation (1981) Standard methods for the examination of water and wastewater (A.P.H.A., Washington D.C., 15th ed.)
14. Shapiro L., Brannock W.W. *US Geological Survey Bulletin* 1962; 1144-A

15. Silverman L., Shideler M.E. *Anal. Chem.* 1959; 31:152
16. Pakalns P. *Anal. Chim. Acta* 1964; 31:576
17. Job P. *Anal. Chim.* 1927; 9:114
18. Dielh H., Lindstrom F. *Anal. Chem.* 1959; 31:414
19. Cheng, K.L., Ueno, K. And Imamura T., *Handbook of Organic Analytical Reagents*, CRC Press, Boca Raton, Florida, 1982
20. IUPAC, Nomenclature, Symbols, Units and Their Usage in Spectrometrical Analysis, *Pure Appl. Chem.* 1976; 105:45
21. Guidelines for Data Acquisition and Data Quality Evaluation in Environmental Chemistry, *Anal. Chem.* 1980; 52:2242
22. Kasiura K. *Chem. Anal. (Warsaw)* 1971; 16:407
23. Rao R.R., Khopkar S.M. *Anal. Chem.* 1983; 55:2320
24. Sauerer A., Troll G. *Talanta* 1984; 31:249
25. Marczenko Z., Kalowska H. *Microchem. J.* 1978; 23:71
26. Nishida H., Nishida T., Ohtomo H. *Bull. Chem. Soc. Jpn.* 1976; 49:571
27. Uesugi K., Miyawaki M. *Microchem. J.* 1976; 21:438
28. Marczenko Z., Kalowska H. *Chem. Anal. (Warsaw)* 1977; 22:835

Date Received: July 20, 1997

Date Accepted: September 25, 1997